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Abstract

The third-order shear deformation plate theory (TPT) is employed to solve the axisymmetric bending and buckling

problems of functionally graded circular plates. Relationships between the TPT solutions of axisymmetric bending and

buckling of functionally graded circular plates and those of isotropic circular plates based on the classical plate theory

(CPT) are presented, from which one can easily obtain the TPT solutions for the axisymmetric bending and buckling of

functionally graded plates. It is assumed in analysis that the mechanical properties of the functionally graded plates

vary continuously through the thickness of the plate and obey a power law distribution of the volume fraction of the

constituents. Effects of material gradient property and shear deformation on the bending and buckling of functionally

graded plates are discussed in the frameworks of the first-order plate theory (FPT) and third-order plate theories. Also,

comparisons of the TPT solutions to the FPT and CPT solutions are presented, which show that the first-order shear

deformation plate theory is enough to consider the effect of shear deformation on the axisymmetric bending and

buckling of functionally graded circular plate, a much higher order and more complex plate theory (say TPT) is not

necessary for such a kind of problem.

� 2003 Elsevier Ltd. All rights reserved.

Keywords: Functionally graded material; FGM; Circular plate; Bending; Buckling; Third-order plate theory; The first-order plate

theory; Classical plate theory
1. Introduction

There are few works on the bending and buckling of functionally graded structures in contrary to the

extensive investigations on isotropic and composite plates and shells. Using finite element method, Praveen

and Reddy (1998) studied the static and dynamic responses of functionally graded ceramic-metal plate
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accounting for the transverse shear deformation, rotary inertia and moderately large rotations in the von

Karman sense, in which effect of imposed temperature field on the response of the functionally graded plate

was discussed in detail. Reddy and Chin (1998) investigated the dynamic thermo-elastic response of

functionally graded cylinders and plates. A thermo-elastic boundary value problem was derived by using
the first-order shear deformation plate theory (FPT) accounting for the coupling with three-dimensional

heat conduction equation for a functionally graded plate. Based on the higher-order shear deformation

theory of plate, both theoretical and finite element formulations for thick FGM plates were developed by

Reddy (2000), and the nonlinear dynamic response of FGM plates subjected to suddenly applied uniform

pressure were studied. Woo and Meguid (2001) derived an analytical solution expressed in terms of Fourier

series for the large deflection of functionally graded plates and shallow shells under transverse mechanical

loading and a temperature field in the framework of von Karman plate theory. Assuming that the material

properties throughout the structure are produced by a spatial distribution of the local reinforcement vol-
ume fraction vf ¼ vf ðx; y; zÞ, Feldman and Aboudi (1997) studied the elastic bifurcation buckling of

functionally graded plate under in-plane compressive loading. Thermal buckling of functionally graded

rectangular thin plate were studied by Javaheri and Eslami (2002a,b), governing equations of the plate were

derived based on the classical and the higher-order shear deformation theories of plate, respectively, and

closed form solutions were obtained under several types of thermal loads. More recently, nonlinear bending

and post-buckling of functionally graded circular plates subjected to mechanical and thermal loadings were

studied by Ma and Wang (2003a,b).

Owing to the mathematical similarity of the governing equations of bending and buckling problems
between the classical and the third-order plate theories, it enable one to derive the solutions based on the

higher-order plate theory in terms of those based on the classical plate theory. Extensive works on the

relationships between the solutions of beams and plates based on the higher-order plate theory and those

based on the classical solutions were carried out (Reddy and Wang, 1997, 1998, 2000; Wang and Lee, 1998;

Wang and Reddy, 1997) and summarized by Wang et al. (2000). It should be noted that most of the

aforementioned works focused on the isotropic and composite beams and plates. For functionally graded

plates, Reddy et al. (1999) obtained the FPT solutions of the axisymmetric bending of functionally graded

Mindlin annular and circular plates, in which the solutions are expressed in terms of the solutions based on
the classical plate theory (CPT). See Wang et al. (2000) for more details.

In the present work, we will employ the third-order shear deformation plate theory to solve the bending

and buckling problems of functionally graded circular plates. The aforementioned method are extended to

derive the relationships between the solutions of the axisymmetric bending and buckling of functionally

graded circular plates based on the third-order shear deformation plate theory (called TPT solutions) and

those of isotropic circular plates based on the classical plate theory (called CPT solutions). Such that one

can easily obtain the TPT solutions for the axisymmetric bending and buckling of FGM circular plates

expressed in terms of the well-known CPT solutions for isotropic circular plates. The relationships may be
used to check the validity, convergence and accuracy of numerical results for FGM plate analysis.

Moreover, Effects of the gradient of material property and shear deformation on the axisymmetric bending

and buckling of functionally graded plates are discussed in the frameworks of FPT and TPT, and com-

parisons of the TPT solutions to the FPT and CPT solutions are presented.
2. Axisymmetric bending problem

A solid functionally graded circular plate with radius b and thickness h is considered here. The cylin-
drical coordinates r, h and z are used in analysis. r axis is taken radially outward from the center of the

plate, h axis is taken along a circumference of the plate, r–h plane is taken to be the undeformed mid-plane
of the plate, and z axis is perpendicular to the r–h plane.
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Generally, Poisson�s ratio t varies in a small range. For simplicity, we assume t be a constant for
functionally graded materials. Moreover, we assume Young�s modulus E varies along the thickness of the
plate and obey the following relation (Praveen and Reddy, 1998; Reddy and Chin, 1998)
EðzÞ ¼ ðEm � EcÞ
h� 2z
2h

� �n

þ Ec; ð1Þ
where the subscripts m and c denote the metallic and ceramic constituents, respectively, and n is a material
constant. Thus, constitutive relations of the functionally graded materials can be expressed as
rr ¼
EðzÞ
1� t2

ðer þ tehÞ; ð2aÞ

rh ¼
EðzÞ
1� t2

ðter þ ehÞ; ð2bÞ

srz ¼
EðzÞ

2ð1þ tÞ crz: ð2cÞ
2.1. Basic equations based on the third-order shear deformation plate theory (TPT)

The third-order shear deformation plate theory is based on the following displacement field (Reddy,

1984)
Urðr; zÞ ¼ uðrÞ þ z/ðrÞ � az3 /

�
þ dw
dr

�
; ð3aÞ

Uzðr; zÞ ¼ wðrÞ; ð3bÞ

where Ur and Uz are the displacements along the coordinates r and z, respectively, u and w are the dis-

placements in the mid-plane of the plate along the coordinates r and z, respectively, / denotes the slope at

z ¼ 0 of the deformed line that was straight in the undeformed plate, and a ¼ 4=3h2. Using the following
relations (Timshenko and Woinowsky-Krieger, 1959)
er ¼
oUr
or

;

eh ¼
Ur
r
;

crz ¼
oUr
oz

þ oUz
or

;

one then obtains
er ¼
du
dr

þ z d/
dr

� az3
d/
dr

�
þ d2w
dr2

�
; ð4aÞ

eh ¼
u
r
þ z/

r
� az3

/
r

�
þ 1

r
dw
dr

�
; ð4bÞ

crz ¼ / þ dw
dr

� 3az2 /

�
þ dw
dr

�
: ð4cÞ
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Using the principle of virtual displacements, one can derive the following equilibrium equations for the

Reddy plate,
dðrNrÞ
dr

� Nh ¼ 0; ð5aÞ

d

dr
ðrMrÞ �Mh � rQr ¼ 0; ð5bÞ

d

dr
ðrQrÞ þ a

d2

dr2
ðrPrÞ � a

dPh

dr
þ rq ¼ 0; ð5cÞ
where
ðNr;Mr; PrÞ ¼
Z h=2

�h=2
rrð1; z; z3Þdz; ð5dÞ

ðNh;Mh; PhÞ ¼
Z h=2

�h=2
rhð1; z; z3Þdz; ð5eÞ

ðQr;RrÞ ¼
Z h=2

�h=2
srzð1; z2Þdz; ð5fÞ

Mr ¼ Mr � aPr; ð5gÞ

Mh ¼ Mh � aPh; ð5hÞ

Qr ¼ Qr � 3aRr ð5iÞ

with q is the transverse load.
The stress resultants and displacement relations can be expressed as
Nr ¼ A11
du
dr

�
þ t

u
r

�
þ B11

d/
dr

�
þ t

/
r

�
� aE11

d2w
dr2

�
þ t
r
dw
dr

�
; ð6aÞ

Nh ¼ A11 t
du
dr

�
þ u
r

�
þ B11 t

d/
dr

�
þ /
r

�
� aE11 t

d2w
dr2

�
þ 1

r
dw
dr

�
; ð6bÞ

Mr ¼ B11
du
dr

�
þ t

u
r

�
þ D11

d/
dr

�
þ t

/
r

�
� aF11

d2w
dr2

�
þ t
r
dw
dr

�
; ð7aÞ

Mh ¼ B11 t
du
dr

�
þ u
r

�
þ D11 t

d/
dr

�
þ /
r

�
� aF11 t

d2w
dr2

�
þ 1

r
dw
dr

�
; ð7bÞ

Qr ¼ A44 /

�
þ dw
dr

�
; ð8Þ

Pr ¼ E11
du
dr

�
þ t

u
r

�
þ F 11

d/
dr

�
þ t

/
r

�
� aH11

d2w
dr2

�
þ t
r
dw
dr

�
; ð9aÞ
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Ph ¼ E11 t
du
dr

�
þ u
r

�
þ F 11 t

d/
dr

�
þ /
r

�
� aH11 t

d2w
dr2

�
þ 1

r
dw
dr

�
; ð9bÞ

Rr ¼ D44 /

�
þ dw
dr

�
; ð10Þ
where
A11;B11;D11;E11; F11;H11ð Þ ¼
Z h=2

�h=2

EðzÞ
1� t2

1; z; z2; z3; z4; z6
� �

dz;

A44;D44; F44ð Þ ¼
Z h=2

�h=2

EðzÞ
2ð1þ tÞ ð1; z

2; z4Þdz;

B11 ¼ B11 � aE11;

D11 ¼ D11 � aF11;

F 11 ¼ F11 � aH11;

A44 ¼ A44 � 3aD44;

D44 ¼ D44 � 3aF44;

bDD11 ¼ D11 � aF 11:
2.2. Basic equations based on the classical plate theory (CPT)

The classical plate theory is based on the following displacement field (Reddy et al., 1999)
Urðr; zÞ ¼ uðrÞ � z dw
dr

; ð11aÞ

Uzðr; zÞ ¼ wðrÞ: ð11bÞ

Equilibrium equations and the stress resultants and displacement relations are given by
dðrNC
r Þ

dr
� NC

h ¼ 0; ð12aÞ

d

dr
ðrMC

r Þ �MC
h � rQCr ¼ 0; ð12bÞ

d

dr
ðrQC

r Þ þ rq ¼ 0; ð12cÞ

MC
r ¼ �D d2wC

dr2

�
þ t

1

r
dwC

dr

�
; ð13aÞ

MC
h ¼ �D t

d2wC

dr2

�
þ 1

r
dwC

dr

�
; ð13bÞ
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where
D ¼ h
12ð1� t2ÞE
and the quantities with superscript C refer to the classical plate theory.

2.3. Bending solutions

From Eqs. (5a) and (6), one obtains
u ¼ a
E11
A11

dw
dr

� B11
A11

/ þ C1r þ C2
1

r
; ð14Þ
where C1 and C2 are integral constants. Substituting Eq. (14) into Eqs. (7) and (9), one obtains
Mr ¼ bXX1

d/
dr

�
þ t

/
r

�
� aX2

d2w
dr2

�
þ t

1

r
dw
dr

�
þ B11ð1þ tÞC1 �

1

r2
B11ð1� tÞC2; ð15aÞ

Mh ¼ bXX1 t
d/
dr

�
þ /
r

�
� aX2 t

d2w
dr2

�
þ 1

r
dw
dr

�
þ B11ð1þ tÞC1 þ

1

r2
B11ð1� tÞC2; ð15bÞ

Pr ¼ bXX2

d/
dr

�
þ t

/
r

�
� aX3

d2w
dr2

�
þ t

1

r
dw
dr

�
þ E11ð1þ tÞC1 �

1

r2
E11ð1� tÞC2; ð16aÞ

Ph ¼ bXX2 t
d/
dr

�
þ /
r

�
� aX3 t

d2w
dr2

�
þ 1

r
dw
dr

�
þ E11ð1þ tÞC1 þ

1

r2
E11ð1� tÞC2; ð16bÞ
where
X1 ¼ D11 � B211=A11;

X2 ¼ F11 � B11E11=A11;

X3 ¼ H11 � E211=A11;

bXX1 ¼ X1 � aX2;

bXX2 ¼ X2 � aX3:
In what follows, we will use the following moment sum MC and M for classical and the third-order plate
theory, respectively, and higher-order moment sums P for the third-order plate theory (Reddy and Wang,
1997),
MC ¼ MC
r þMC

h

1þ t
; ð17aÞ

M ¼ Mr þMh

1þ t
; ð17bÞ

P ¼ Pr þ Ph

1þ t
: ð17cÞ
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From Eqs. (13) and (12b), one obtains
MC ¼ �D 1
r
d

dr
r
dwC

dr

� �
ð18Þ
and
r
dMC

dr
¼ rQCr : ð19Þ
Similarly, we have from Eqs. (15) and (16) that
M ¼ bXX1

1

r
d

dr
ðr/Þ � aX2

1

r
d

dr
r
dw
dr

� �
þ B11C1; ð20Þ

P ¼ bXX2

1

r
d

dr
ðr/Þ � aX3

1

r
d

dr
r
dw
dr

� �
þ E11C1; ð21Þ

r
dM
dr

¼ d

dr
ðrMrÞ �Mh; ð22Þ

r
dP
dr

¼ d

dr
ðrPrÞ � Ph: ð23Þ
Letting the effective shear force in the third-order plate theory being
rVr � rQr þ a
d

dr
ðrPrÞ

�
� Ph

�
; ð24Þ
one then obtains from Eq. (5b) that
rVr ¼ r
dM
dr

: ð25Þ
Moreover, we have from Eqs. (5b), (5c) and (22)
d

dr
ðrVrÞ þ rq ¼ 0: ð26Þ
From Eqs. (12c), (26) and (25), we obtain
rVr ¼ rQCr þ C3; ð27aÞ

r
dM
dr

¼ rQCr þ C3: ð27bÞ
From Eqs. (27b) and (19), we have
M ¼ MC þ C3 ln r þ C4; ð28Þ
where C3 and C4 are integral constants. Substituting Eq. (18) into Eq. (28), we have
M ¼ �D 1
r
d

dr
r
dwC

dr

� �
þ C3 ln r þ C4: ð29Þ
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From Eqs. (20) and (29), one obtains
/ � a
X2bXX1

dw
dr

þ B11
2bXX1

C1r ¼ � DbXX1

dwC

dr
þ C3
4bXX1

rð2 ln r � 1Þ þ C4
2bXX1

r þ C5bXX1

1

r
; ð30Þ
where C5 is a constant. Such that Eq. (8) can be rewritten as
r/ ¼ 1

A44
rQr � r

dw
dr

: ð31Þ
Substituting Eq. (31) into Eqs. (20) and (21), one obtains
M ¼
bXX1

A44

1

r
d

dr
ðrQrÞ � X1

1

r
d

dr
r
dw
dr

� �
þ B11C1; ð32Þ

P ¼
bXX2

A44

1

r
d

dr
ðrQrÞ � X2

1

r
d

dr
r
dw
dr

� �
þ E11C1: ð33Þ
From Eq. (32), we have
1

r
d

dr
r
dw
dr

� �
¼

bXX1

X1A44

1

r
d

dr
ðrQrÞ �

M
X1

þ B11
X1

C1: ð34Þ
Substituting Eq. (34) into Eq. (33), one obtains
P ¼ �a
X

X1A44

1

r
d

dr
ðrQrÞ þ

X2

X1

M þ E11X1 � B11X2

X1

C1; ð35Þ
where
X ¼ X1X3 � X2
2:
Using Eqs. (5i), (22) and (23), Eq. (5b) can be expressed as
rðQr � 3aRrÞ ¼ r
dM
dr

� ar
dP
dr

: ð36Þ
From Eqs. (10) and (31), we have
Rr ¼
D44

A44
Qr:
Substituting Rr and Eqs. (27b) and (35) into Eq. (36), we obtain
a2
X

X1A44
r
d

dr
1

r
d

dr
ðrQrÞ

� �
�

bAA44
A44

ðrQrÞ ¼ �
bXX1

X1

rQC
r � C3; ð37Þ
where
bAA44 ¼ A44 � 3aD44:
From Eq. (37) one can obtain the solution of shear force. In what follows, we will establish the rela-

tionships between deflection w of the FGM plate based on the third-order plate theory and deflection wC of
the isotropic plate based on the classical plate theory. Substituting Eq. (29) into Eq. (34) and integrating the

resulted equation with respect to r, one then obtains the relation between w and wC
w ¼ D
X1

wC þ 1

4X1

B11C1r2
	

� C3r2ðln r � 1Þ � C4r2 � 4C5 ln r � 4C6


þ

bXX1

X1A44

Z
Qr dr; ð38Þ
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where C6 is a constant. Substituting Eq. (38) into Eq. (30), one obtains
/ ¼ � D
X1

dwC

dr
þ aX2

X1A44
Qr þ

1

4X1

�
� 2B11C1r þ C3rðln r � 1Þ þ 2C4r þ 4C5

1

r

�
: ð39Þ
Now, we consider a solid circular plate subjected to uniformly distributed load of intensity q. Using the
continuous and symmetric conditions at the center of the plate, i.e. r ¼ 0, one can easily see from Eq. (27a)

that C3 ¼ 0. Such that Eq. (37) can be expressed as
d2Qr
dr2

þ 1

r
dQr
dr

� 1

r2

�
þ b2

�
Qr ¼ b0Q

C
r ; ð40Þ
where
b2 ¼ X1
bAA44

a2X
;

b0 ¼ �
bXX1A44
a2X

;

QCr ¼ � 1
2
qr:
General solution of Eq. (40) can be expressed as
Qr ¼ A1I1ðbrÞ þ A2K1ðbrÞ þ C0r; ð41Þ
where
C0 ¼ � q
2

bXX1A44
X1

bAA44 ;

with A1 and A2 being constants, and I1 and K1 being modified first-order Bessel functions of the first and
second kinds, respectively.

If a solid circular plate is clamped at the upper and lower surfaces on the outer boundary but immovable

in r direction, the continuous and symmetric conditions at the center of the plate, i.e. r ¼ 0 give
A2 ¼ 0; ð42aÞ

C2 ¼ 0; ð42bÞ

C5 ¼ 0: ð42cÞ
The boundary conditions at r ¼ b give
C1 ¼ 0; ð43aÞ

C4 ¼ 0; ð43bÞ

A1 ¼ � C0b
I1ðbbÞ

; ð43cÞ

C6 ¼
bXX1C0b2

2A44
1

�
� 2I0ðbbÞ

bbI1ðbbÞ

�
: ð43dÞ



94 L.S. Ma, T.J. Wang / International Journal of Solids and Structures 41 (2004) 85–101
Now, we obtain the TPT solution of deflection of the clamped FGM circular plate
w ¼ D
X1

wC þ
bXX2
1

X2
1
bAA44

qb2

4
1

�
þ I0ðbrÞ � I0ðbbÞ

I1ðbbÞ
2

bb
� r

b

� �2�
; ð44Þ
where the classical solution of the deflection wC for the isotropic circular plates is
wC ¼ qb4

64D
1

�
� r

b

� �2�2
:

Letting a ¼ 0, one then obtains
bXX2
1

X2
1
bAA44 ¼

1

A44
and
1

b
¼ a

X

X1
bAA44

� �1=2

¼ 0:
Such that Eq. (44) reduces to the FPT solution of the FGM circular plate obtained by Reddy et al. (1999)
w ¼ wF ¼ D
X1

wC þ qb2

4A44
1

�
� r

b

� �2�
; ð45Þ
where the transverse shear stiffness A44 should be changed to KsA44 with Ks is the shear correction factor
commonly taken to be 5/6.

For the isotropic circular plates, i.e. n ¼ 0 and EðzÞ ¼ E, solution (44) reduces to the TPT solution for
isotropic circular plate obtained by Reddy and Wang (1997)
w ¼ wC þ k1
qb2

4
1

�
þ I0ðk2rÞ � I0ðk2bÞ

I1ðk2bÞ
2

k2b
� r

b

� �2�
; ð46Þ
where
k1 ¼
6

5Gh
;

k2 ¼
420ð1� tÞ

h2
;

and
G ¼ E
2ð1þ tÞ :
To numerically compare the results obtained from the classical, the first-order and the third-order plate

theories, a Aluminum/Zirconia functionally graded material is considered here. Young�s moduli and
Poisson�s ratios are 70 GPa and 0.3 for Aluminum, and 151 GPa and 0.3 for Zirconia, respectively, which
are taken from Praveen and Reddy (1998) and Reddy (2000). Fig. 1 shows variations of the maximum

dimensionless deflection w� ¼ 64wDc=ðqb4Þ of the clamped FGM circular plates with the ratio h=b, the plate
thickness to the plate radius, for different values of material gradient constant n. The solid and dashed lines
are the TPT and FPT results, respectively. It is seen that the maximum deflections of the FGM plates
decrease with increasing the values of n, and increase with increasing the values of h=b due to the effect of
transverse shear deformation. It should be noted that the TPT results are very close to the FPT results for
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Fig. 1. The maximum dimensionless deflection of the clamped FGM plates vs h=b for different values of material gradient constant n.
Solid lines: TPT solutions and dashed lines: FPT solutions.
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the cases considered in the present paper. It could be concluded that the first-order shear deformation plate

theory is enough to consider the effect of shear deformation on the axisymmetric bending of FGM circular

plates.

In what follows, we will derive the TPT solutions for the axisymmetric buckling of FGM circular plates,

and compare the TPT solutions with the CPT and FPT solutions.
3. Axisymmetric buckling problem

Considering a solid FGM circular plate subjected to uniformly distributed radial pressure p. Constitutive
equations of the plate are given by Eqs. (2). Referencing to Javaheri and Eslami (2002b), one then obtains
the following nonlinear geometric relations accounting for the moderately large deflection in the von

Karman sense,
er ¼
du
dr

þ 1

2

dw
dr

� �2

þ z d/
dr

� az3
d/
dr

�
þ d2w
dr2

�
; ð47aÞ

eh ¼
u
r
þ z/

r
� az3

/
r

�
þ 1

r
dw
dr

�
; ð47bÞ

crz ¼ / þ dw
dr

� 3az2 /

�
þ dw
dr

�
: ð47cÞ
To obtain the governing equations for the stability of the FGM plate, we assume
u ¼ u0 þ u1; ð48aÞ

/ ¼ /0 þ /1; ð48bÞ

w ¼ w0 þ w1; ð48cÞ

where ðu0;/0;w0Þ is a configuration on the primary path and its adjacent equilibrium configuration is
ðu;/;wÞ, ðu1;/1;w1Þ are arbitrary small virtual increments. If one assumes ðu0;/0;w0Þ being ðu0; 0; 0Þ, then
the pre-buckling coupled mode is omitted.
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According to the Trefftz criterion (Brush and Almroth, 1975), the governing equations for the buckling

of the plate subjected to in-plane edge loading can be obtained by using the principle of virtual displace-

ments
A11
d

dr
1

r
d

dr
ðru1Þ

� �
þ B11

d

dr
1

r
d

dr
ðr/1Þ

� �
� aE11

d

dr
r2w1 ¼ 0; ð49aÞ

B11
d

dr
1

r
d

dr
ðru1Þ

� �
þ bDD11

d

dr
1

r
d

dr
ðr/1Þ

� �
� aF 11

d

dr
r2w1 � bAA44 /1

�
þ dw1
dr

�
¼ 0; ð49bÞ

aE11r2 1

r
d

dr
ðru1Þ

� �
þ aF 11r2 1

r
d

dr
ðr/1Þ

� �
� a2H11r4w1 þ bAA44 1r ddr r /1

��
þ dw1
dr

��

þ 1

r
d

dr
rN 0

r

dw1
dr

� �
¼ 0; ð49cÞ
where
r2 ¼ d2

dr2
þ 1

r
d

dr
;

and N 0
r corresponding to the ðu0; 0; 0Þ is the pre-buckling radial force, i.e., N 0

r ¼ �p.
The in-plane boundary condition is
A11
du1
dr

�
þ t

u1
r

�
þ B11

d/1

dr

�
þ t

/1

r

�
� aE11

d2w1
dr2

�
þ t

1

r
dw1
dr

�
¼ 0 at r ¼ b; ð50Þ
for clamped boundary conditions,
/1 ¼ 0 at r ¼ b; ð51aÞ

w1 ¼ 0 at r ¼ b; ð51bÞ

dw1
dr

¼ 0 at r ¼ b: ð51cÞ
For simply supported boundary conditions,
w1 ¼ 0 at r ¼ b; ð52aÞ

B11
du1
dr

�
þ t

u1
r

�
þ D11

d/1

dr

�
þ t

/1

r

�
� aF11

d2w1
dr2

�
þ t

dw1
dr

�
¼ 0 at r ¼ b; ð52bÞ

E11
du1
dr

�
þ t

u1
r

�
þ F 11

d/1

dr

�
þ t

/1

r

�
� aH11

d2w1
dr2

�
þ t

dw1
dr

�
¼ 0 at r ¼ b: ð52cÞ
The continuous and symmetric conditions at the center of the plate (r ¼ 0)
u1 ¼ 0; ð53aÞ

/1 ¼ 0; ð53bÞ

dw1
dr

¼ 0; ð53cÞ
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Vr ¼ 0: ð53dÞ

We know from the above mentioned continuous and symmetric conditions at r ¼ 0 and boundary

condition at r ¼ b that the integral constants C2 ¼ 0 and C1 ¼ 0 in Eq. (14). Such that, Eq. (14) can be

rewritten as
A11u1 þ B11/1 ¼ aE11
dw1
dr

ð54Þ
and Eqs. (20) and (21) reduce to
M ¼ bXX1

1

r
d

dr
ðr/1Þ � aX2r2w1; ð55Þ

P ¼ bXX2

1

r
d

dr
ðr/1Þ � aX3r2w1: ð56Þ
We have from Eq. (55) that
1

r
d

dr
ðr/1Þ ¼

MbXX1

þ a
X2bXX1

r2w1: ð57Þ
From Eqs. (54) and (57), one obtains
1

r
d

dr
ðru1Þ ¼ a

E11X1 � B11X2

A11 bXX1

r2w1 �
B11M

A11 bXX1

: ð58Þ
From Eq. (49b), one obtains
bAA44r /1

�
þ dw1
dr

�
¼ B11r

d

dr
1

r
d

dr
ðru1Þ

� �
þ bDD11r

d

dr
1

r
d

dr
ðr/1Þ

� �
� aF 11r

d

dr
r2w1: ð59Þ
Substituting Eqs. (59) and (58) into Eq. (49c), we have
bXX1r2 1

r
d

dr
ðr/1Þ

� �
� aX2r4w1 ¼ pr2w1: ð60Þ
From Eq. (55), one obtains
r2M ¼ bXX1r2 1

r
d

dr
ðr/1Þ

� �
� aX2r4w1: ð61Þ
From Eqs. (60) and (61), one obtains
r2M ¼ pr2w1: ð62Þ

Substituting Eqs. (62), (57) and (58) into Eq. (49c), one obtains
r4M � nr2M � fM ¼ 0
which can be rewritten as
ðr2 þ k1Þðr2 þ k2ÞM ¼ 0; ð63Þ
where
k1;2 ¼ �n=2	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn=2Þ2 þ f

q
;

n ¼ f1 þ f2p;
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f ¼ f0p;

f0 ¼
bAA44
a2X

;

f1 ¼
bAA44X1

a2X
;

f2 ¼ �
bXX

a2X
;

bXX ¼ X1 � 2aX2 þ a2X3:
For the plates with clamped and simply supported edge, we have
M ¼ H1 at r ¼ b; ð64aÞ

dM
dr

¼ 0 at r ¼ 0; ð64bÞ
where H1 is a constant.
Since k2 in Eq. (63) is negative, it does not lead to a feasible buckling solution. Letting
m ¼ ðr2 þ k2ÞM ; ð65Þ
one then rewrites Eq. (63) as
ðr2 þ k1Þm ¼ 0: ð66Þ

Considering the fact that the moment sum M is a function of r only, we have
m ¼ H2 at r ¼ b; ð67Þ
where H2 is a constant. Substituting Eqs. (57) and (58) into Eq. (59) and considering Eqs. (53b), (53c) and
(64b), one obtains
d

dr
r2w1 ¼ 0 at r ¼ 0: ð68Þ
Noting Eqs. (62), (68) and (64b), we have
dm
dr

¼ 0 at r ¼ 0: ð69Þ
In what follows, we consider the axisymmetric buckling of isotropic Kirchhoff circular plates with

clamped and simply supported edges. Using the Kirchhoff moment sum MC, Wang (1996) derived the

governing equations of the buckling of the plates under uniformly distributed radial pressure p
ðr2 þ kCÞMC ¼ 0 ð70Þ
with
MC ¼ H3; at r ¼ b; ð71aÞ

dMC

dr
¼ 0; at r ¼ 0; ð71bÞ
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where H3 is a constant and
kC ¼ pC

D
ð72Þ
with pC being the critical buckling load of the isotropic plate based on the classical plate theory.
Based on the mathematic similarity between Eqs. (66), (67), (69) and Eqs. (70) and (71), one may deduce

that
k1 ¼ kC: ð73Þ
In view of Eq. (73), one can obtain the following relationship between the TPT solution of the critical

buckling load pRF of FGM plate and the CPT solution of the critical buckling load pC of isotropic plate
pRF ¼ pC
f1Dþ pC

f0D2 � f2DpC
: ð74Þ
If a ¼ 0, Eq. (74) reduces to the relationship between the FPT solution of critical buckling load pFF of
FGM plate and the CPT solution of critical buckling load pC of isotropic plate
pFF ¼ pC
X1

Dþ X1
A44
pC

; ð75Þ
where
A44 ¼ Ks

Z h=2

�h=2

EðzÞ
2ð1þ mÞ dz:
Letting n ¼ 0 and EðzÞ ¼ E, the FGM plates become isotropic plates. One can easily obtain from Eqs.
(74) and (75) that
pR ¼ pC
1þ pC

70Gh

1þ 17pC

14Gh

; ð76Þ
pF ¼ pC

1þ pC

KsGh

: ð77Þ
Eqs. (76) and (77) are the relationships between the TPT and FTP solutions for the critical buckling

loads pR and pF of isotropic plates and the CPT solution for the critical buckling load pC of isotropic plate,
which are identical with that obtained by Wang and Lee (1998).

The critical buckling load parameters pb2=D for the clamped and the simply supported FGM circular

plates mentioned in Section 2 are calculated based on the first-order and the third-order plate theories and

plotted in Figs 2 and 3, respectively, for different values of h=b, ratio of the plate thickness to the plate
radius. It is seen that values of critical buckling load parameters of the FGM plates increase with increasing

the values of material gradient constant n, and decrease with increasing the values of h=b due to the effect of
transverse shear deformation. It should be noted that the TPT solutions are almost the same as the FPT

solutions for the cases considered in this paper. We could conclude that the first-order shear deformation
plate theory is enough to consider the effect of shear deformation on the axisymmetric buckling of FGM

circular plates.



Fig. 2. Buckling load parameter of the clamped FGM plates vs material gradient constant n. Solid lines: TPT solutions and dashed

lines: FPT solutions.

Fig. 3. Buckling load parameter of the simply supported FGM plates vs material gradient constant n. Solid lines: TPT solutions and
dashed lines: FPT solutions.
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4. Conclusions

The third-order shear deformation plate theory is employed to solve the axisymmetric bending and

buckling problems of functionally graded circular plates. Based on the mathematical similarity of the

governing equations of bending and buckling problems between the classical plate theory (CPT) and the

third-order plate theory (TPT), relationships between the TPT solutions for the axisymmetric bending and

buckling of FGM circular plates and the CPT solutions for isotropic plate have been derived, from which

one can easily obtain the TPT solutions for the bending and buckling of functionally graded plates from the
well-known CPT solutions. The relationships derived in the present paper could be used to check the

validity, convergence and accuracy of numerical results for FGM plate analysis.

Effects of the material gradient property and shear deformation on the axisymmetric bending and

buckling of FGM circular plates are discussed in the framework of the first-order plate theory (FPT) and

TPT. Comparisons of the TPT solutions for bending and buckling of FGM plates to the CPT and FPT

solutions are presented, which show that the present TPT solutions for the axisymmetric bending and
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buckling of the FGM circular plates are almost the same as the FPT solutions. Such that it can be con-

cluded that the first-order shear deformation plate theory is enough to consider the effect of shear defor-

mation on the axisymmetric bending and buckling of FGM plates. A much higher and more complex plate

theory (say TPT) is not necessary in this case. By the way, it is seen that the present TPT solutions for the
axisymmetric bending and buckling of FGM plates can provide useful benchmark to check the accuracy of

related numerical results.
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