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Abstract

The third-order shear deformation plate theory (TPT) is employed to solve the axisymmetric bending and buckling
problems of functionally graded circular plates. Relationships between the TPT solutions of axisymmetric bending and
buckling of functionally graded circular plates and those of isotropic circular plates based on the classical plate theory
(CPT) are presented, from which one can easily obtain the TPT solutions for the axisymmetric bending and buckling of
functionally graded plates. It is assumed in analysis that the mechanical properties of the functionally graded plates
vary continuously through the thickness of the plate and obey a power law distribution of the volume fraction of the
constituents. Effects of material gradient property and shear deformation on the bending and buckling of functionally
graded plates are discussed in the frameworks of the first-order plate theory (FPT) and third-order plate theories. Also,
comparisons of the TPT solutions to the FPT and CPT solutions are presented, which show that the first-order shear
deformation plate theory is enough to consider the effect of shear deformation on the axisymmetric bending and
buckling of functionally graded circular plate, a much higher order and more complex plate theory (say TPT) is not
necessary for such a kind of problem.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

There are few works on the bending and buckling of functionally graded structures in contrary to the
extensive investigations on isotropic and composite plates and shells. Using finite element method, Praveen
and Reddy (1998) studied the static and dynamic responses of functionally graded ceramic-metal plate
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accounting for the transverse shear deformation, rotary inertia and moderately large rotations in the von
Karman sense, in which effect of imposed temperature field on the response of the functionally graded plate
was discussed in detail. Reddy and Chin (1998) investigated the dynamic thermo-elastic response of
functionally graded cylinders and plates. A thermo-elastic boundary value problem was derived by using
the first-order shear deformation plate theory (FPT) accounting for the coupling with three-dimensional
heat conduction equation for a functionally graded plate. Based on the higher-order shear deformation
theory of plate, both theoretical and finite element formulations for thick FGM plates were developed by
Reddy (2000), and the nonlinear dynamic response of FGM plates subjected to suddenly applied uniform
pressure were studied. Woo and Meguid (2001) derived an analytical solution expressed in terms of Fourier
series for the large deflection of functionally graded plates and shallow shells under transverse mechanical
loading and a temperature field in the framework of von Karman plate theory. Assuming that the material
properties throughout the structure are produced by a spatial distribution of the local reinforcement vol-
ume fraction v, = v/(x,y,z), Feldman and Aboudi (1997) studied the elastic bifurcation buckling of
functionally graded plate under in-plane compressive loading. Thermal buckling of functionally graded
rectangular thin plate were studied by Javaheri and Eslami (2002a,b), governing equations of the plate were
derived based on the classical and the higher-order shear deformation theories of plate, respectively, and
closed form solutions were obtained under several types of thermal loads. More recently, nonlinear bending
and post-buckling of functionally graded circular plates subjected to mechanical and thermal loadings were
studied by Ma and Wang (2003a,b).

Owing to the mathematical similarity of the governing equations of bending and buckling problems
between the classical and the third-order plate theories, it enable one to derive the solutions based on the
higher-order plate theory in terms of those based on the classical plate theory. Extensive works on the
relationships between the solutions of beams and plates based on the higher-order plate theory and those
based on the classical solutions were carried out (Reddy and Wang, 1997, 1998, 2000; Wang and Lee, 1998;
Wang and Reddy, 1997) and summarized by Wang et al. (2000). It should be noted that most of the
aforementioned works focused on the isotropic and composite beams and plates. For functionally graded
plates, Reddy et al. (1999) obtained the FPT solutions of the axisymmetric bending of functionally graded
Mindlin annular and circular plates, in which the solutions are expressed in terms of the solutions based on
the classical plate theory (CPT). See Wang et al. (2000) for more details.

In the present work, we will employ the third-order shear deformation plate theory to solve the bending
and buckling problems of functionally graded circular plates. The aforementioned method are extended to
derive the relationships between the solutions of the axisymmetric bending and buckling of functionally
graded circular plates based on the third-order shear deformation plate theory (called TPT solutions) and
those of isotropic circular plates based on the classical plate theory (called CPT solutions). Such that one
can easily obtain the TPT solutions for the axisymmetric bending and buckling of FGM circular plates
expressed in terms of the well-known CPT solutions for isotropic circular plates. The relationships may be
used to check the validity, convergence and accuracy of numerical results for FGM plate analysis.
Moreover, Effects of the gradient of material property and shear deformation on the axisymmetric bending
and buckling of functionally graded plates are discussed in the frameworks of FPT and TPT, and com-
parisons of the TPT solutions to the FPT and CPT solutions are presented.

2. Axisymmetric bending problem

A solid functionally graded circular plate with radius » and thickness # is considered here. The cylin-
drical coordinates r, 8 and z are used in analysis. » axis is taken radially outward from the center of the
plate, 0 axis is taken along a circumference of the plate, »—0 plane is taken to be the undeformed mid-plane
of the plate, and z axis is perpendicular to the »—0 plane.
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Generally, Poisson’s ratio v varies in a small range. For simplicity, we assume v be a constant for
functionally graded materials. Moreover, we assume Young’s modulus £ varies along the thickness of the
plate and obey the following relation (Praveen and Reddy, 1998; Reddy and Chin, 1998)

E(Z)Z(Em—Ec)<h;h22)"+Ec, (1)

where the subscripts m and ¢ denote the metallic and ceramic constituents, respectively, and » is a material
constant. Thus, constitutive relations of the functionally graded materials can be expressed as

L) 2

o) = 1E_(Zl))2 (ve, + &), (2b)
__E@ |

Tz = 201 +0) Vrz (2¢)

2.1. Basic equations based on the third-order shear deformation plate theory (TPT)

The third-order shear deformation plate theory is based on the following displacement field (Reddy,
1984)

Ulr2) = () + z0) o2 (94 5 ). (5a)

Us(r,z) = w(r), (3b)

where U, and U, are the displacements along the coordinates » and z, respectively, u and w are the dis-
placements in the mid-plane of the plate along the coordinates » and z, respectively, ¢ denotes the slope at
z = 0 of the deformed line that was straight in the undeformed plate, and o« = 4/3h%. Using the following
relations (Timshenko and Woinowsky-Krieger, 1959)

_ou,
A P
U,
&) = —,
r
oy, o,
yrz - az ar )
one then obtains
Cdu dp 4 (d¢  dw
R PR PR (dr—i_dr2 ' (4a)
1
so:z+z?—o¢z3(?+—d—vv)7 (4b)
r r r rdr

dw dw
= b+ -3 (9 G ). (40
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Using the principle of virtual displacements, one can derive the following equilibrium equations for the
Reddy plate,

d(rN,)

dr No =0,

d(M) M, — 0,

ar 0 rQ =

d d? dp,
a(rQr)—i_adrz(rP) E—i_rq_oa

)2
(0.R,) = / 0.(1,2)dz

h/2
M, =M, — aP,,
My =M, — oPy,
0, =0, — 3R,

with ¢ is the transverse load.
The stress resultants and displacement relations can be expressed as
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Asy, Day, Fyy) = —= _(1,2%,2%d
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By = By — aEyy,
Dy = Dy — oy,
Fi = Fy —oHy,,
Ay = Ass — 30D,
Dyy = Dys — 30Fy,

1311 = 511 - OCF11~

2.2. Basic equations based on the classical plate theory (CPT)

The classical plate theory is based on the following displacement field (Reddy et al., 1999)
dw

Unrz) = u(r) =z g

Us(r,z) = w(r).
Equilibrium equations and the stress resultants and displacement relations are given by

d(rNy)

— Ny =0
dr 0 ’

d
3 "M7) = Mj —r0; =0,

d rQrC) +rq=0,
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where

h

P=ha-mk

and the quantities with superscript C refer to the classical plate theory.
2.3. Bending solutions

From Egs. (5a) and (6), one obtains

E11 dw B]] 1
= _——— — 14
u A“ ar Al¢+C1I’—|—C2 ( )
where C; and C, are integral constants. Substituting Eq. (14) into Egs. (7) and (9), one obtains
2 1 1
M .Q ((31¢ d)) —OCQz<(ji—2+U (;W) +Bll(1+U)C1——B“(1—D)C2, (153)
~/d d*w 1 d 1
Mg:QI l)—(b—f—? —OC.QQ U—F> it +B11 +D)C1+ Bll(l—l))CZ, (15b)
dr r dr?
~ /d d? 1 1
Pr:QQ _¢+09 —OC.Q3 —M}—‘r ——W +E11 +U)C1——E11(1 —U)Cz, (163)
dr r 72 r dr
~/d d*w 1d 1
P():QZ(U_¢+£) _0593(0—1/;—‘,———“/) +E11(1+U)C1+—2E11(1—U)C2, (16b)
r r r r r r

where
Q) =Dy — B}, /An,
Q) = Fyy — BiEn /A,
Qs = Hyy — E}, /4n,
Q=0 — o,
Q)= Q, — Q.
In what follows, we will use the following moment sum M€ and M for classical and the third-order plate

theory, respectively, and higher-order moment sums P for the third-order plate theory (Reddy and Wang,
1997),

C C
me =M My (17a)
1+4+v
m =M Mo (17b)
I+
p_bth (17¢)

140w
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From Egs. (13) and (12b), one obtains

1d/ dwC
C —_— —_—— [
M Dr dr <r dr > (18)
and
dm© c
r " rQ) (19)
Similarly, we have from Egs. (15) and (16) that
~1d 1d/ dw
M:Ql;a(r(ﬁ)—an;a(rE)—&—B“Ch (20)
~1d 1d/ dw
Pzﬂz;a(”f))—a%;a(’”@)+E11C1, (21)
dM d
" T a4 (rM,) — My, (22)
dp d
ra:a(rpr) —Pg. (23)

Letting the effective shear force in the third-order plate theory being

rmErQAW{%Oﬂ)—%} (24)

one then obtains from Eq. (5b) that

= 2
r, rdr (25)

Moreover, we have from Egs. (5b), (5¢) and (22)

d
& (rV,) +rq =0. (26)

From Egs. (12¢), (26) and (25), we obtain

rV, = rQS + Cs, (27a)
dm

From Egs. (27b) and (19), we have
M =M+ Cslnr+ Cy, (28)

where C; and C, are integral constants. Substituting Eq. (18) into Eq. (28), we have

1d/ dw®



92 L.S. Ma, T.J. Wang | International Journal of Solids and Structures 41 (2004) 85-101

From Egs. (20) and (29), one obtains
.Qz dW Bll D dW C3

—O(A———FTCV:—— + 21117"—1 —7"+,\—— 30
P T, T e T TR G0)
where Cs is a constant. Such that Eq. (8) can be rewritten as
1 dw
rﬁb—Z_M”Qr—VE- (31)
Substituting Eq. (31) into Egs. (20) and (21), one obtains
2 1d 1d [ dw
== - — v - Q - 5 - B b 32
A44rdr(rQ) 1rdr<rdr)+ uC (32)
2, 1d d [/ dw
P—A_M;E(VQ;-)—QZ;E( P >+E11C1 (33)
From Eq. (32), we have
1d/ dw Q 1d M 311
hutd ) ) — i 4
rdr(rdr> Q1A447"dr(Q) Ql < (3 )
Substituting Eq. (34) into Eq. (33), one obtains
Q 1d Q, E\ Q) — B
P=- )+ =M+ ——— (), 35
QA44rd7"(Q) Ql Ql ! ( )
where
Q=00 - Q.
Using Egs. (51), (22) and (23), Eq. (5b) can be expressed as
dm dpP
V(Qr — 3OCR,) = FW — OCVE . (36)
From Egs. (10) and (31), we have
Dy
r 7Qr
Ay

Substituting R, and Egs. (27b) and (35) into Eq. (36), we obtain

QO df1d
2QA44 dr[rdr(Qr)] = (rQ,) = — =10, — Cs, (37)

where
244 = Z44 - 30(544-

From Eq. (37) one can obtain the solution of shear force. In what follows, we will establish the rela-
tionships between deflection w of the FGM plate based on the third-order plate theory and deflection w® of
the isotropic plate based on the classical plate theory. Substituting Eq. (29) into Eq. (34) and integrating the
resulted equation with respect to 7, one then obtains the relation between w and w®

D

1
w=_—w —|——[BHC1r — G (Inr — 1) — Cy? —4C5lnr—4C6 /Qrdr (38)
(o} 4¢ Q1 Ass
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where Cg is a constant. Substituting Eq. (38) into Eq. (30), one obtains

D dw® Q 1 1
w olsan Qr_|__|:—2B]1C1}’+C3}’(11’11"—1)+2C47'—|—4C5; . (39)

=—— — 4+ —
d) Q] dr QIA44 491

Now, we consider a solid circular plate subjected to uniformly distributed load of intensity g. Using the
continuous and symmetric conditions at the center of the plate, i.e. » = 0, one can easily see from Eq. (27a)
that C3 = 0. Such that Eq. (37) can be expressed as

&g, 1do, (1 c
drz +; dr _(r_2+ﬁ)QV_ﬂ0Qrﬂ (40)
where
Q4
2 S Ay
ﬁ - 0625 9
Q 4y
ﬁO = - O(2§ )
1
QrC = —EQ”
General solution of Eq. (40) can be expressed as
Qr:Alll(ﬁF')—f—AzKl(ﬁr)—f-Cor, (41)
where
o0
¢ =1 1%44,
20 4u

with 4, and 4, being constants, and /; and K; being modified first-order Bessel functions of the first and
second kinds, respectively.

If a solid circular plate is clamped at the upper and lower surfaces on the outer boundary but immovable
in r direction, the continuous and symmetric conditions at the center of the plate, i.e. r =0 give

A, =0, (42a)
C, =0, (42b)
Cs = 0. (42¢)

C =0, (43a)

Cy =0, (43b)
___Gb

A1 = l(ﬂb), (43C)

_Q Cob? { | 2o(Bb) } (43d)

= d ' pbn(pb)
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Now, we obtain the TPT solution of deflection of the clamped FGM circular plate
Dy By Wb 2 ()
Ql Q%A44 4 [l(ﬁb) ﬁb b
where the classical solution of the deflection wC for the isotropic circular plates is
4 2 2
wC = ﬂ 1-— (Z) .
64D b
Letting « = 0, one then obtains
Q1
9%244 A44

w

(44)

and
12

i=*(aza)
— =0 ——— =0.
B Q1A

Such that Eq. (44) reduces to the FPT solution of the FGM circular plate obtained by Reddy et al. (1999)

D qb® ry\?2
F C
—F o2 |- (_) , 45
vEWERY +4A44{ b ] (45)
where the transverse shear stiffness 444 should be changed to K 444 with K is the shear correction factor
commonly taken to be 5/6.

For the isotropic circular plates, i.e. n = 0 and E(z) = E, solution (44) reduces to the TPT solution for
isotropic circular plate obtained by Reddy and Wang (1997)

bz I(k V)—Io(kzb) 2 7\ 2
— € L 20|y L otRer) — holab) £ (T 46
WW+14[+ LUab) kb ()] (46)
where
6
kl—ﬁa
420(1 —v)
kzzh—z,
and
_E
S 2(1+v)°

To numerically compare the results obtained from the classical, the first-order and the third-order plate
theories, a Aluminum/Zirconia functionally graded material is considered here. Young’s moduli and
Poisson’s ratios are 70 GPa and 0.3 for Aluminum, and 151 GPa and 0.3 for Zirconia, respectively, which
are taken from Praveen and Reddy (1998) and Reddy (2000). Fig. 1 shows variations of the maximum
dimensionless deflection w* = 64wD,/(gb*) of the clamped FGM circular plates with the ratio //b, the plate
thickness to the plate radius, for different values of material gradient constant n. The solid and dashed lines
are the TPT and FPT results, respectively. It is seen that the maximum deflections of the FGM plates
decrease with increasing the values of n, and increase with increasing the values of /b due to the effect of
transverse shear deformation. It should be noted that the TPT results are very close to the FPT results for
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Fig. 1. The maximum dimensionless deflection of the clamped FGM plates vs /b for different values of material gradient constant n.
Solid lines: TPT solutions and dashed lines: FPT solutions.

the cases considered in the present paper. It could be concluded that the first-order shear deformation plate
theory is enough to consider the effect of shear deformation on the axisymmetric bending of FGM circular
plates.

In what follows, we will derive the TPT solutions for the axisymmetric buckling of FGM circular plates,
and compare the TPT solutions with the CPT and FPT solutions.

3. Axisymmetric buckling problem

Considering a solid FGM circular plate subjected to uniformly distributed radial pressure p. Constitutive
equations of the plate are given by Egs. (2). Referencing to Javaheri and Eslami (2002b), one then obtains
the following nonlinear geometric relations accounting for the moderately large deflection in the von
Karman sense,

du 1/dw\’> d¢ ,/d¢ d*w
8"—a+z<a) “5‘”(5*@)’ (47a)
1
gezz—f—z?—cxf(?—i——d—vv), (47b)
r r rrdr
dw ) dw
e (] (470)
To obtain the governing equations for the stability of the FGM plate, we assume
u = uy + u, (48a)
¢ = o+ o1, (48b)
w = wp + wy, (48¢)

where (ug, ¢y, wo) is a configuration on the primary path and its adjacent equilibrium configuration is
(u, ¢, w), (u1, ¢, w) are arbitrary small virtual increments. If one assumes (ug, ¢, wo) being (i, 0,0), then
the pre-buckling coupled mode is omitted.
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According to the Trefftz criterion (Brush and Almroth, 1975), the governing equations for the buckling
of the plate subjected to in-plane edge loading can be obtained by using the principle of virtual displace-
ments

dfld — df1d d_,
g, {;5(”‘1)] +3115 {;a(”ﬁbl)} —OCEnaV wi =0, (49a)
— df1d ~ dfld — d dw
B115 Ldr(rm)] +D11dr[ (”f’ )] *“Fllavzwl A44<¢1 +dr1> =0, (49b)
1d — 1d 1
ochVZ[;E(Wl)] +O€F11V2[;5(W51)] — o’ H, Vi, +A44_—{ <¢1 )}
1 d 0dW1 o
g (MG =0 e
where
& 1d
2 _ - 4 -
v 7dr2+rdr7

and N? corresponding to the (u,0,0) is the pre-buckling radial force, i.e., N° = —p.
The in-plane boundary condition is

d d’ 1d
A (%—F 7)+Bn( ¢1 %)—OCEH(dM;“"_%):O at r = b; (50)
for clamped boundary conditions,
¢ =0 atr=», (51a)
wi =0 atr=5a, (51b)
d
=0 atr=b. (5lc)
For simply supported boundary conditions,
w =0 atr=>, (52a)
2
Bll<%+ u1>+D“<%+uﬁ)ocF“(ddM;lJrv%) =0 atr=25a, (52b)
2
Ey (%4» —> +F11< ¢1 %) —OCH11<%+D%> =0 atr=>5a. (520)
The continuous and symmetric conditions at the center of the plate (»r = 0)
u = 0, (533)
¢, =0, (53b)
dw =0, (53¢)
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v, =0. (53d)

We know from the above mentioned continuous and symmetric conditions at » = 0 and boundary
condition at » = b that the integral constants C, = 0 and C; = 0 in Eq. (14). Such that, Eq. (14) can be
rewritten as

— dw
Anuy + B¢y = ok d—l (54)
r
and Egs. (20) and (21) reduce to
~1d
M= Q " a(”d’l) — aViwy, (55)
P=0,0 L) - u0rv? (56)
= 2;5 rQ — 0843 wi.
We have from Eq. (55) that
1d M Q_,

From Egs. (54) and (57), one obtains
1d —O(EIIQI _B“QZVZW FUM

——(ruy) = = - 58

rdr( ) An €, l An €, %)
From Eq. (49b), one obtains

~ dw;} - dfld ~ df1d - d_,

A44}”<¢1 + W) = B]]I"@ |:; a (rul)} + D]]l"a |:; a(rqbl)] — OCF]]I"EV wWi. (59)
Substituting Egs. (59) and (58) into Eq. (49¢c), we have

~ 1d

Q,V? { — (rqbl)} — a2y Viw = pViw,. (60)

rdr
From Eq. (55), one obtains
~ 1d
VM = Q,V? {; i (r(;’)l)} — Q) Viw,. (61)

From Egs. (60) and (61), one obtains

VM = pViw,. (62)
Substituting Egs. (62), (57) and (58) into Eq. (49c), one obtains

VM — EVPM — (M =0
which can be rewritten as

(V2 + ) (V2 + )M =0, (63)

where
dia=—E/2£1/(€/2)° +¢,

ézé’l+52pv
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_ A44
éO - E7
C 24491
1 OCZQ ’
Q
C2 - _E7

Q= Q) — 200, + Qs
For the plates with clamped and simply supported edge, we have

M=H atr=b, (64a)
WM _o atr=o, (64b)
dr

where H; is a constant.
Since 4, in Eq. (63) is negative, it does not lead to a feasible buckling solution. Letting

m= (V> + )M, (65)
one then rewrites Eq. (63) as
(V2 + 2)m = 0. (66)
Considering the fact that the moment sum M is a function of » only, we have
m=H, atr=hb, (67)

where H, is a constant. Substituting Egs. (57) and (58) into Eq. (59) and considering Egs. (53b), (53¢) and
(64b), one obtains

d

—V*w, =0 atr=0. (68)
dr

Noting Egs. (62), (68) and (64b), we have
d—m:O at r =0. (69)
dr

In what follows, we consider the axisymmetric buckling of isotropic Kirchhoff circular plates with
clamped and simply supported edges. Using the Kirchhoff moment sum M, Wang (1996) derived the
governing equations of the buckling of the plates under uniformly distributed radial pressure p

(V2 +259MC =0 (70)
with
M =H;, atr=b, (71a)
C
Mo atr=o, (71b)

dr
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where H; is a constant and

C

" 2

with p© being the critical buckling load of the isotropic plate based on the classical plate theory.
Based on the mathematic similarity between Egs. (66), (67), (69) and Egs. (70) and (71), one may deduce
that

J=15 (73)

In view of Eq. (73), one can obtain the following relationship between the TPT solution of the critical
buckling load p} of FGM plate and the CPT solution of the critical buckling load p© of isotropic plate

PR _ C éllD +pC
i {oD* — (,Dp©

If « = 0, Eq. (74) reduces to the relationship between the FPT solution of critical buckling load pf of
FGM plate and the CPT solution of critical buckling load p© of isotropic plate

(74)

c &
D-i—Q' C’

A44

h/2
=/
h/2 2
Letting n = 0 and E(z) = E, the FGM plates become isotropic plates. One can easily obtain from Egs.
(74) and (75) that

pr=0r (75)

where

1 +:55
PR=pC 1 Z(;pcg, (76)
T4Gh
C
p= P c (77)
L+ G

Egs. (76) and (77) are the relationships between the TPT and FTP solutions for the critical buckling
loads pR and p" of isotropic plates and the CPT solution for the critical buckling load p® of isotropic plate,
which are identical with that obtained by Wang and Lee (1998).

The critical buckling load parameters pb*/D for the clamped and the simply supported FGM circular
plates mentioned in Section 2 are calculated based on the first-order and the third-order plate theories and
plotted in Figs 2 and 3, respectively, for different values of //b, ratio of the plate thickness to the plate
radius. It is seen that values of critical buckling load parameters of the FGM plates increase with increasing
the values of material gradient constant n, and decrease with increasing the values of /b due to the effect of
transverse shear deformation. It should be noted that the TPT solutions are almost the same as the FPT
solutions for the cases considered in this paper. We could conclude that the first-order shear deformation
plate theory is enough to consider the effect of shear deformation on the axisymmetric buckling of FGM
circular plates.
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Fig. 2. Buckling load parameter of the clamped FGM plates vs material gradient constant n. Solid lines: TPT solutions and dashed
lines: FPT solutions.
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Fig. 3. Buckling load parameter of the simply supported FGM plates vs material gradient constant n. Solid lines: TPT solutions and
dashed lines: FPT solutions.

4. Conclusions

The third-order shear deformation plate theory is employed to solve the axisymmetric bending and
buckling problems of functionally graded circular plates. Based on the mathematical similarity of the
governing equations of bending and buckling problems between the classical plate theory (CPT) and the
third-order plate theory (TPT), relationships between the TPT solutions for the axisymmetric bending and
buckling of FGM circular plates and the CPT solutions for isotropic plate have been derived, from which
one can easily obtain the TPT solutions for the bending and buckling of functionally graded plates from the
well-known CPT solutions. The relationships derived in the present paper could be used to check the
validity, convergence and accuracy of numerical results for FGM plate analysis.

Effects of the material gradient property and shear deformation on the axisymmetric bending and
buckling of FGM circular plates are discussed in the framework of the first-order plate theory (FPT) and
TPT. Comparisons of the TPT solutions for bending and buckling of FGM plates to the CPT and FPT
solutions are presented, which show that the present TPT solutions for the axisymmetric bending and
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buckling of the FGM circular plates are almost the same as the FPT solutions. Such that it can be con-
cluded that the first-order shear deformation plate theory is enough to consider the effect of shear defor-
mation on the axisymmetric bending and buckling of FGM plates. A much higher and more complex plate
theory (say TPT) is not necessary in this case. By the way, it is seen that the present TPT solutions for the
axisymmetric bending and buckling of FGM plates can provide useful benchmark to check the accuracy of
related numerical results.
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